SYNTHESIS OF 2,24-DIEPICASTASTERONE AND 3,24-DIEPICASTASTERONE AS POTENTIAL BRASSINOSTEROID METABOLITES OF THE COCKROACH *Periplaneta americana*

Brunhilde VOIGT^{*a*1,*}, Andrea PORZEL^{*a*2}, Günter ADAM^{*a*3}, Dieter GOLSCH^{*b*}, Waldemar ADAM^{*b*1}, Christoph WAGNER^{*c*1} and Kurt MERZWEILER^{*c*2}

^{*a*} Abteilung für Naturstoffchemie, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, 06120 Halle/S., Germany; e-mail: ¹ bvoigt@ipb-halle.de, ² aporzel@ipb-halle.de, ³ gadam@ipb-halle.de

^b Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; e-mail: ¹ adam@chemie.uni-wuerzburg.de

^c Fachbereich Chemie, Martin-Luther-Universität, Kurt-Mothes-Str. 2, 06120 Halle/S., Germany; e-mail: ¹ c.wagner@uni-halle.de, ² merzweiler@uni-halle.de

> Received November 20, 2001 Accepted December 17, 2001

Dedicated in memoriam to Dr Václav Černý.

Investigations of the metabolic conversion of the phytohormone 24-epicastasterone (1) in the cockroach *Periplaneta americana* (L.) required the synthesis of 2,24-diepicastasterone (4), 3,24-diepicastasterone (7b) and 2-dehydro-3,24-diepicastasterone (9) as reference standards. 2,24-Diepicastasterone (4) was synthesized from 2α , 3α -epoxy derivative 2 as well as from the 2β , 3β -epoxy-22,23-diol 3 by acid-catalyzed water addition to the epoxy function leading to the desired 2β , 3α -*trans* functionality. 3,24-Diepicastasterone (7b) was prepared by NaBH₄-reduction of the 3-oxo derivative 6. Upon deprotection conditions from the ketol acetonides 6 and 8 in both cases 2-dehydro-3,24-diepicastasterone (9) was obtained. The structure of 2,24-diepicastasterone (4) was confirmed by X-ray analysis.

Keywords: Steroids; Phytohormones; Ecdysteroids; Oxidations; Brassinosteroids; 2,24-Diepicastasterone; 3,24-Diepicastasterone; Metabolism; *Periplaneta americana*.

The brassinosteroids represent a new class of steroidal phytohormones of ubiquitous occurrence in the plant kingdom with high growth-promoting and antistress activity¹. The striking structural similarity of brassinosteroids with moulting hormones of the ecdysone type² encouraged us to investigate metabolic transformations in insects. In the course of such studies, we reported recently the organ-specific epimerization of the native phytohormone 24-epicastasterone (1) to 2,24-diepicastasterone (4) in ovaries of the cockroach *Periplaneta americana* (L.), which represent the first metabolic

transformation of a brassinosteroid observed in an insect³. In this paper we present the synthesis of metabolite **4** as well as 3,24-diepicastasterone (**7b**) and 2-dehydro-3,24-diepicastasterone (**9**), required as essential reference standards in these studies.

RESULTS AND DISCUSSION

For the synthesis of 2,24-diepicastasterone (4) the ketal derivative of (22R,23R,24R)-2 α ,3 α -epoxy-22,23-dihydroxy-24-methyl-5 α -cholestan-6-one (2) was used, which is available in seven steps from ergosterol⁴ (Scheme 1). Hydrolytic opening of the oxirane ring in 2 with 2.5 M sulfuric acid in tetrahydrofurane-water 9 : 1 at room temperature followed by deprotection of the side chain with 4 M HCl in MeOH at 50 °C gave 2,24-diepicastasterone (4) in good yield, prepared also from the corresponding 2 α ,3 α -epoxy

22,23-diol by Levinson *et al.*⁵. Acid-catalyzed epoxide opening of 2β,3β-epoxydiol⁴ **3**, detected also very recently as native phytohormone 24-episecasterone in *Lychnis viscaria*⁶, led likewise to compound **4**. Thus, upon acid-catalyzed ring opening of both epimeric epoxides **2** and **3**, in agreement with the Fürst-Plattner-rule the same compound **4** with *trans*-diaxial 2β,3α-diol function was formed. The structure of **4** was confirmed by X-ray analysis⁷ (Fig. 1), showing an intramolecular O(22)–H···O(23) hydrogen bond as well as three intermolecular hydrogen bridges to nearest neighbour molecules within the cell.

For the synthesis of 3,24-diepicastasterone (**7b**) the diisopropylidene derivative of 24-epicastasterone **5** was used as starting compound (Scheme 2). Reaction of **5** with methyl(trifluoromethyl)dioxirane⁸ (TFD) in dichloromethane during 20 h at room temperature afforded 3-dehydro-24-epicastasterone-22,23-acetonide (**6**) as main product (52%). As minor components the corresponding 2-dehydro-3,24-diepicastasterone acetonide **8** (8%), reflecting simultaneous isomerisation of **6**, as well as the 22,23-acetonide of 24-epicastasterone⁹ (10%) were obtained.

In earlier investigations we have shown the selective C-25 side-chain oxyfunctionalization of the 22,23-monoacetonide of 2,3-diacetyl-24-epicastasterone with TFD (ref.⁹). However, in the case of bisacetonide **5** the ketal function in position 2α , 3α is considerably more reactive towards TFD than the stronger shielded ketal in the side chain. The first step of the reaction cascade is the deprotection to the 2α , 3α -diol, followed by oxidation of

one of the hydroxy groups to afford mainly the 3-oxo derivative **6** besides 2-ketone **8** and the 22,23-acetonide of 24-epicastasterone. Similar results were described by Bovicelli *et al.*¹⁰ and Curci *et al.*¹¹, who used dimethyl-dioxirane for the monooxidation of *sec*-1,2-diols to the corresponding keto alcohols, which exploits the inhibiting effect of the carbonyl group to prevent further oxidation.

Careful reduction of compound **6** with sodium borohydride in ethanol at -25 °C furnished stereoselectively the 3 β -hydroxy derivative **7a**. Recovery of the 22,23-diol function by treatment of **7a** with 4 M HCl in MeOH at 50 °C led to the desired 3,24-diepicastasterone **7b**. Compound **7b**, available also from a 2 α -bromo-3-oxo derivative¹², was detected as a free and acyl-conjugated metabolite of 24-epicastasterone (1) in cell suspension cultures of *Ornithopus sativus*¹³. Very recently 3,24-diepicastasterone was detected in immature seeds of *Phaseolus vulgaris*¹⁴. Also the 24*S*-epimer of **7b**, 3-epicastasterone, was described to be naturally occurring in *Phaseolus vulgaris* seeds¹⁵.

Deprotection of ketals of **6** and **8** with 4 M HCl in MeOH at 50 °C led in both cases to the same 2-dehydro-3,24-diepicastasterone (**9**), which indicates that simultaneous isomerisation of the 2-hydroxy-3-oxo function has taken place in case of **6**. Similar rearrangements under acetic conditions to the preferred 3 β -hydroxy-2-oxo compounds have been reported in the cholestane series^{16,17}. The spectral data of the new compounds are in agreement with the given structures (see Experimental). The unequivocal assignments of the ¹H and ¹³C NMR signals were established by the combined use of one- and two-dimensional NMR experiments (COSY, HSQC, HMBC). The configuration at C-2 and/or C-3 was established by NOE difference experiments (Tables I and II).

The phytohormone activity of 2,24- and 3,24-diepicastasterone (**4** and **7b**) as well as 2-dehydro-3,24-diepicastasterone (**9**) was studied using the highly sensitive and specific rice lamina inclination assay¹⁸. The obtained results showed that the 2-epimer **4** at a concentration of 0.1 ppm has 87%, the 3-epimer **7b** 80% and the 2-dehydro derivative **9** 60% activity related to 24-epicastasterone as standard (100%). Investigations of compounds **4**, **7b** and **9** for an activity as moulting hormone showed no agonist nor antagonist properties¹⁹.

TABLE I ¹ H NMR d	ata of compounds	: 4, 6, 7a, 7b, 8 and	9 (in CDCl ₃)			
Docition			δH ^{a,}	(z, Hz)		
LUMIUU	4 ^c	9	7a	7b ^c	8	6
1	1.68/1.77	1.46/2.542 dd (12.7/7.0)	1.242 dd (12.9/11.4)/2.05	1.215 dd (12.7/11.5)/2.02	2.364 d (13.3)/2.594 d (13.3)	2.361 d (13.2)/2.593 d (13.2)
5	3.828 m	4.258 ddd (12.1/7.0/3.2)	3.598 ddd (11.4/9.0/4.8)	3.525 ddd (11.5/9.1/4.9)		I
e	3.864 m	1	3.389 ddd (11.6/9.0/4.9)	3.314 ddd (11.7/9.1/5.0)	4.158 ddd (12.1/7.4/3.3)	4.161 dd (12.0/7.5)
4	1.63/1.98	2.518 dd (14.0/2.9)/2.705 ddd (14.0/13.6/13.4)	1.95/1.60	1.91/1.54	2.484 ddd (13.9/7.4/3.7)/1.76	2.485 ddd (13.9/7.5/3.2)/1.76
5	2.747 dd (12.4/2.3)	2.650 dd (13.4/2.7)	2.332 dd (12.6/3.0)	2.339 dd (12.6/2.9)	2.803 dd (12.7/3.1)	2.799 dd (12.7/3.2)
7	2.03/2.273 dd (13.2/4.6)	1.998 dd (13.1/12.3)/ 2.388 dd (13.1/4.4)	1.96/2.315 dd (13.2/4.6)	2.00/2.300 dd (13.3/4.6)	2.04/2.403 dd (13.4/4.5)	2.06/2.407 dd (13.4/4.5)
ø	1.80	1.848 dddd (12.3/10.7/10.7/4.4)	1.784 m	1.794 m	1.75	1.76
6	1.34	1.35	1.31	1.34	1.55	1.56
11	1.65/1.35	1.69/1.44	1.65/1.34	1.64/1.36	1.53/1.38	1.54/1.38
12	1.26/2.03	1.32/2.06	1.30/2.04	1.28/2.03	1.32/2.06	1.30/2.06
14	1.33	1.32	1.31	1.32	1.32	1.33
15	1.57/1.111 m	1.58/1.11	1.58/1.097 m	1.57/1.110 m	1.59/1.116 m	1.60/1.123 m
16	1.99/1.30	2.04/1.36	2.03/1.34	2.00/1.30	2.03/1.37	2.01/1.32
17	1.57	1.55	1.54	1.57	1.55	1.60

:			δ _Γ	₁ ^{a,b} (J, Hz)		
Position	4 ^c	9	7a	7b ^c	~	6
18	0.687 s	0.692 s	0.663 s	0.682 s	0.668 s	0.681 s
19	0.955 s	1.045 s	0.804 s	0.794 s	0.713 s	0.712 s
20	1.45	1.50	1.50	1.45	1.52	1.47
21	0.969 d (6.7)	0.986 d (6.3)	0.981 d (6.2)	0.964 d (6.7)	0.983 d (6.3)	0.979 d (6.7)
22	3.666 d (4.4/1.3)	3.935 d (7.0)	3.936 (br) d (7.0)	3.660 dd (4.8/1.6)	3.940 d (6.9)	3.698 dd (4.6/1.5)
23	3.36	3.567 dd (9.4/7.0)	3.563 dd (9.4/7.0)	3.359 dd (6.0/4.8)	$3.566 \mathrm{m}$	3.416 dd (6.0/4.6)
24	1.47	1.56	1.56	1.47	1.57	1.50
25	1.992 m	2.08	2.10	1.90	2.08	1.901 sept. d (6.8/3.8)
$26^{\rm pro-R}$	0.859 d (6.8)	0.813 d (6.8) ^d	0.811 d (6.8)	0.859 d (6.8)	0.812 d (6.8) ^d	0.872 d (6.8)
27 ^{pro-S}	0.917 d (6.9)	0.911 d (7.0) ^d	0.909 d (7.0)	0.915 d (6.9)	0.911 d (7.0) ^d	0.922 d (6.9)
28	0.833 d (7.0)	0.707 d (7.0)	0.704 d (7.0)	0.833 d (7.0)	0.707 d (7.0)	0.851 d (7.0)
Me	I	1.342 s	1.343 s	I	1.348 s	I
Me	I	1.387 s	1.389 s	I	1.392 s	I

Brassinosteroid Metabolites

Collect. Czech. Chem. Commun. (Vol. 67) (2002)

^d Diastereotopic methyl groups 26/27 are not assigned.

TABLE II			
¹³ C chemical shi	fts of compounds 4, 6	6, 7a, 7b, 8 and 9 (in CDCl ₃)

Position	δ _C						
	4 ^{<i>a</i>}	6	7a	7 b ^a	8	9	
1	38.7	47.8	44.3	44.1	50.5	50.6	
2	69.5	72.0	72.1	71.7	209.9	209.9	
3	68.6	211.0	75.8	75.3	74.5	74.5	
4	22.6	35.1	27.8	27.5	31.0	31.0	
5	51.4	58.6	56.6	56.6	55.2	55.2	
6	214.2	208.0	210.1	210.9	208.4	208.4	
7	46.3	46.4	46.5	46.4	46.5	46.5	
8	37.7	37.6	37.6	37.6	37.7	37.7	
9	54.2	53.4	53.8	53.7	53.3	53.2	
10	40.8	42.7	42.9	42.8	46.4	46.4	
11	20.8	21.8	21.6	21.5	21.4	21.4	
12	39.2	39.1	39.1	39.3	38.9	39.1	
13	42.6	42.9	42.9	42.8	42.7	42.6	
14	56.3	56.2	56.3	56.4	56.2	56.4	
15	23.6	23.8	23.8	23.8	23.8	23.8	
16	27.4	27.6	27.6	27.6	27.6	27.7	
17	52.4	53.4	53.4	52.6	53.3	52.5	
18	11.5	11.8	11.8	11.8	11.7	11.7	
19	14.6	13.8	14.4	14.2	14.2	14.2	
20	40.1	37.9	38.0	40.1	37.9	40.2	
21	12.0	12.6	12.6	12.3	12.6	12.4	
22	71.9	82.3	82.4	72.4	82.3	72.6	
23	75.5	80.3	80.4	76.0	80.4	76.4	
24	41.4	43.7	43.8	41.4	43.7	41.4	
25	26.6	27.8	27.7	26.9	27.7	27.0	
$26^{\operatorname{pro-}R}$	16.8	16.1^{b}	16.0	17.2	15.9^{b}	17.2	
$27^{\text{pro-}S}$	21.7	21.1^{b}	21.1	22.0	21.1^{b}	21.1	
28	10.3	9.9	9.8	10.7	11.7	10.8	
Cq		108.0	108.0		108.0		
Me		27.4	27.4		27.3		
Me		27.1	27.2		27.1		

 a In CDCl_3 + $\mathrm{CD}_3\mathrm{OD}.$ b Diastereotopic methyl groups 26/27 are not assigned.

EXPERIMENTAL

General

Melting points were determined on a Boetius hot-stage microscope and are uncorrected. IR spectra (wavenumbers in cm⁻¹) were recorded on a Bruker IFS 28 instrument. Optical rotations were measured on a DIP 1000-polarimeter and are given in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. UV spectra were measured on a Uvikon 941 Kontron instrument. CD spectra were recorded with a Jasco J 710 spectrometer. Mass spectra (EI MS, 70 eV) were obtained with a AMD 402 spectrometer. The GC MS data of trimethylsilyl derivatives were obtained with a MD-800 Fisons instrument. The relative retention times (RR_{\star}) values were calculated with respect to 5α -cholestane. ¹H and 2D NMR spectra were recorded on a Varian UNITY 500 spectrometer at 499.8 MHz, whereas ¹³C and APT spectra were determined on a Varian GEMINI 300 spectrometer at 75.5 MHz. CDCl₃ was used as solvent unless otherwise noted. TMS (& 0) and $CDCl_3$ (δ 77.0) were used as internal reference for ¹H and ¹³C spectra, respectively. Chemical shifts are given in ppm (δ -scale), coupling constants (J) in Hz. TLC plates precoated with silica gel 60 PF254 0.2 mm (Merck) and for column chromatography silica gel 60, 0.04-0.063 mm (Merck), were used. The preparative HPLC analysis was carried out on a Knauer instrument, supplied with a YMC-column, ODS, 5 mm, 20 × 150 mm, with MeCN-H₂O as eluent and UV detection at 210 nm. The elemental analyses were carried out on a LECO CHNS-932 instrument (LECO Instrumente GmbH, Kirchheim/München.

For the X-ray crystal structure determination, the data were collected on a STOE-IPDS diffractometer by using MoK α radiation ($\lambda = 0.71073$ Å) at room temperature. The structure was solved by direct methods (SHELXS86)²⁰ and all non H-atoms were refined anisotropically by full-matrix least-squares on F^2 ; H-atoms were included in calculated positions and refined as riding atoms (SHELXL93)²¹. For the graphical representations the program DIAMOND was used²².

2,24-Diepicastasterone (4)

Method A. From **2**: A solution of epoxide **2** (49 mg, 0.1 mmol) in THF–H₂O (9 : 1 v/v, 15 ml) was treated with 2.5 M H₂SO₄ (0.2 ml) and the mixture was stirred at room temperature for 2 h. After evaporation of the solvent the residue was extracted with CHCl₃ to give 46 mg crude product, which was heated at 50 °C with 4 M HCl (1 ml) in MeOH (10 ml) for 3 h. Work-up and flash chromatography by elution with ethyl acetate gave **4** (37 mg, 80%) with m.p. 234–235 °C and $[\alpha]]_D^{29}$ –11.90 (*c* 1.04, MeOH). HPLC: *R*_t 5.92, MeCN–H₂O 65 : 35 v/v. IR (Nujol), v_{max}: 3 560, 3 526, 3 454 (OH), 1 685 (CO). UV (*c* 1.04, MeOH), λ_{max} (ε): 289 (50). CD: $\Delta \varepsilon_{294}$ –1.35 (MeCN). EI MS, *m*/*z* (rel.%): 446 (M⁺ – 18, 4), 393 (M⁺ – 71, 5), 375 (393 – 18, 7), 364 (M⁺ – 100, 100), 345 (M⁺ – 119, 55). GC MS: *RR*_t 1.89. EI MS of the methylboronate–TMS–ether, *m*/*z*: 632 (M⁺, 3), 617 (M⁺ – 15, 6), 515 (617 – 98, 67), 426 (32); HR MS, *m*/*z*: 364.2619 (calculated for C₂₂H₃₆O₄ 364.2624), 345.2428 (calculated for C₂₂H₃₃O₃ 345.2426). For C₂₈H₄₈O₅ calculated: 72.37% C, 10.42% H; found: 72.21% C, 10.20% H. For ¹H and ¹³C NMR spectra see Tables I and II.

Method B. From **3**: A solution of 2β , 3β -epoxide **3** (23 mg, 0.05 mmol) was treated with 2.5 M H₂SO₄ as described under method *A*. After 5 min at room temperature the reaction was complete; work-up and crystallization from ethyl acetate–hexane gave **4** (21 mg, 86%), whose data are identical with those of **4**, synthesized as described under method A.

X-Ray Crystal Structure Determination of 4

C₂₈H₄₈O₅; orthorhombic; space group *P*2₁2₁2₁; unit cell dimensions: *a* = 6.265(2) Å, *b* = 14.976(3) Å, *c* = 28.035(8) Å, *α* = β = γ = 90°, *V* = 2 630.4(12) Å³, *Z* = 4, density (calculated) = 1.173 Mg m⁻³; absorption coefficient 0.078 mm⁻¹; *F*(000) = 1 024. θ range: 1.99 to 26.05°; index ranges: −7 ≤ *h* ≤ 7, −18 ≤ *k* ≤ 18, −34 ≤ *l* ≤ 34; reflections collected: 22 246; independent reflections: 5 096 [*R*(int)= 0.1167]; data/restraints/parameters: 5 096/0/490. *S*: 0.924; final *R* indices [*I* > 2σ(*I*)]: *R*₁ = 0.0430, *wR*₂ = 0.0705; *R* indices (all data): *R*₁ = 0.0849, *wR*₂ = 0.0801; absolute structure parameter: −0.0 (11); largest difference peak and hole: 0.168 and −0.143 e Å⁻³. Compound **4** has three intermolecular and one intramolecular hydrogen bridges: O(2)–H(45)…O(3) = 2.1352; O(3)–H(46)…O(6) = 1.9162; O(23)–H(48)…O(6) = 1.9300; O(22)–H(47)…O(23) = 2.1263 (ref.⁷).

3-Dehydro-24-epicastasterone 22,23-Acetonide (6) and 2-Dehydro-3,24-diepicastasterone 22,23-Acetonide (8)

A solution of 24-epicastasterone diacetonide (5; 300 mg, 0.55 mmol) in CH_2Cl_2 (15 ml) was treated with a 0.2 M solution of TFD (ref.⁸) in CH_2Cl_2 (3.6 ml). After 20 h standing at room temperature the peroxide test was negative. Work-up, SiO₂ chromatography and elution with hexane–ethyl acetate 75 : 25 v/v gave the 3-oxo derivative **6** as main product (144 mg, 52%), m.p. 189–192 °C and $[\alpha]]_D^{26}$ +4.32 (*c* 1.27, MeOH). IR (Nujol), v_{max}: 3 500 (OH), 1 721 (CO). UV (*c* 1.27, MeOH), λ_{max} (ε): 290 (105), 256 (175). EI MS, *m/z*: 502 (M⁺, 2), 487 (M⁺ – 15, 88), 431 (M⁺ – 71, 28), 387 (431 – 44, 24), 301 (32), 171 (96), 142 (100); HR MS, *m/z*: 487.3442 (calculated for C₃₀H₄₇O₅ 487.3461), 171.1391 (calculated for C₁₀H₁₉O₂ 171.1397), 142.1356 (calculated for C₉H₁₈O 142.1355). For C₃₁H₅₀O₅ calculated: 74.06% C, 10.02% H; found: 74.12% C, 10.03% H. For ¹H and ¹³C NMR spectra see Tables I and II.

Further elution with hexane–ethyl acetate 6 : 4 v/v furnished the 2-dehydro derivative **8** (22 mg, 8%) with m.p. 121–124 °C and $[\alpha]]_D^{25}$ +2.10 (*c* 1.01, MeOH). IR (Nujol), v_{max} : 3 478 (OH), 1 704 (CO). UV (*c* 1.01, MeOH), λ_{max} (ε): 259 (270). CD: $\Delta \varepsilon_{311}$ –0.65 (MeOH); $\Delta \varepsilon_{303}$ –0.56; $\Delta \varepsilon_{276}$ +0.72; $\Delta \varepsilon_{234}$ +0.22; $\Delta \varepsilon_{202}$ –1.08. EI MS, *m/z*: 503 (M⁺ + 1, 23), 487 (M⁺ – 15, 78), 431 (M⁺ – 71, 29), 387 (431 – 44, 27), 301 (38), 171 (100), 142 (87), 99 (64). HR MS, *m/z*: 487.3438 (calculated for $C_{30}H_{47}O_5$ 487.3452), 431.2813 (calculated for $C_{26}H_{39}O_5$ 431.2828), 301.1819 (calculated for $C_{19}H_{25}O_3$ 301.1835), 171.1380 (calculated for $C_{6}H_{11}O$ 99.0808). ¹H and ¹³C NMR spectra see Tables I and II.

3,24-Diepicastasterone 22,23-Acetonide (7a)

A solution of **6** (20 mg, 0.04 mmol) in dry EtOH (10 ml) and NaBH₄ (2 mg, 1 equivalent) was stirred under argon at -25 °C for 5 min. TLC monitoring showed two new more polar products, which were separated by preparative HPLC. The fraction eluted with MeCN-H₂O 95 : 5 had R_t 8.95 and was the acetonide **7a** (17 mg, 85%) with m.p. 228-231 °C (ref.¹² gives m.p. 235-236 °C) and $[\alpha]]_D^{24}$ -51.4 (*c* 1.02, MeOH). UV (*c* 1.27, MeOH), λ_{max} (ϵ): 280 (483). CD: $\Delta \epsilon_{299}$ -0.84 (MeCN). EI MS, *m/z*: 489 (M⁺ - 15, 38), 433 (M⁺ - 71, 15), 389 (489 - 100, 17), 301 (18), 171 (69), 142 (100), 99 (80). For ¹H and ¹³C NMR spectra see Tables I and II.

The fraction with R_t 9.58 was identical with the known 22,23-acetonide of 24-epicastasterone (ref.⁹).

3,24-Diepicastasterone (7b)

The acetonide **7a** (12 mg) was deprotected by stirring of the methanolic solution (6 ml) with 4 M HCl (0.6 ml) at 50 °C for 1 h. Work-up and crystallization (CHCl₃) gave the desired 3,24-diepicastasterone (**7b**; 9 mg, 80%) with m.p. 209–212 °C (ref._ gives m.p. 213–215 °C) and $[\alpha]_D^{23}$ -52.16 (*c* 0.533, MeOH). HPLC: R_t 5.47 (MeCN-H₂O 65 : 35 v/v). UV (*c* 0.53, MeOH), λ_{max} (ϵ): 285 (195). CD: $\Delta \epsilon_{298}$ -0.86 (MeCN). EI MS, *m/z*: 364 (M⁺ – 100, 100), 345 (45), 319 (38). GC MS: RR_t = 2.04. EI MS of the methylboronate-TMS-ether, *m/z*: 512 (M⁺ – 120, 8), 358 (9), 287 (10), 155 (100). HR MS, *m/z*: 364.2597 (calculated for C₂₂H₃₆O₄ 364.2580), 363.2520 (calculated for C₂₂H₃₅O₄ 363.2505), 362.2453 (calculated for C₂₂H₃₄O₄ 362.2449), 346.2479 (calculated for C₂₂H₃₄O₃ 346.2450), 345.2400 (calculated for C₂₂H₃₃O₃ 345.2370), 319.2262 (calculated for C₂₀H₃₁O₃ 319.2251). For ¹H and ¹³C NMR spectra see Tables I and II.

2-Dehydro-3,24-diepicastasterone (9)

Method A. From **6**: Acetonide **6** (27 mg, 0.05 mmol) in MeOH (5 ml) was stirred with 4 M HCl (0.5 ml) at 50 °C for 2 h. Work-up and SiO₂ chromatography gave **9** (20 mg, 80%) with m.p. 125–128 °C and $[\alpha]_D^{26}$ + 2.50 (*c* 0.80, MeOH). UV (*c* 0.08, MeOH), λ_{max} (ε): 275 (578). CD: $\Delta \varepsilon_{299}$ –0.04 (MeOH); $\Delta \varepsilon_{234}$ +0.02. EI MS, *m/z*: 462 (M⁺, 4), 458 (12), 391 (M⁺ – 71, 8), 362 (M⁺ – 100, 100), 361 (M⁺ – 101, 99), 343 (361 – 18, 86). HR MS, *m/z*: 362.2419 (calculated for C₂₂H₃₄O₄ 362.2381), 361.2357 (calculated for C₂₂H₃₃O₄ 361.2335), 343.2255 (calculated for C₂₂H₃₁O₃ 343.2236), 332.2339 (calculated for C₂₁H₃₂O₃ 332.2327), 101.0981 (calculated for C₆H₁₃O 101.0996). For ¹H and ¹³C NMR spectra see Tables I and II.

Method B. From **8**: Acetonide **8** (25 mg, 0.05 mmol) was deprotected in the same manner as described in method *A*. After SiO_2 chromatography, a product was separated (15 mg, 60%), whose physical data were identical with that of **9**, described under method *A* and was synthesized from **6**.

The authors thank Dr J. Schmidt for mass-spectral measurements, Dr L. Dinan, University of Exeter, U.K., for the bioassay experiments and the Kulturministerium des Landes Sachsen–Anhalt for financial support.

REFERENCES AND NOTES

- For reviews, see: a) Adam G., Porzel A., Schmidt J., Schneider B., Voigt B. in: Studies in Natural Products Chemistry (Atta-ur-Rahman, Ed.), Vol. 18, p. 495. Elsevier, Amsterdam-London-New York-Tokyo 1996; b) Khripach V. A., Zhabinskii V. N., de Groot A. E.: Brassinosteroids – a New Class of Plant Hormones. Academic Press, San Diego 1999; c) Sakurai A., Yokota T., Clouse S. D. (Eds): Brassinosteroids, Steroidal Plant Hormones. Springer, Tokyo 1999; d) Adam G., Schmidt J., Schneider B.: Prog. Chem. Org. Nat. Prod. 1999, 78, 1.
- 2. Lafont R.: Arch. Insect Biochem. Physiol. 1997, 35, 3.
- 3. Schmidt J., Richter K., Voigt B., Adam G.: Z. Naturforsch., C 2000, 55, 233.
- 4. Voigt B., Takatsuto S., Yokota T., Adam G.: J. Chem. Soc., Perkin Trans. 1 1995, 1495.
- 5. Levinson E. E., Kuznetsova N. A., Podkhalyuzina N. Y., Traven Y. F.: *Mendeleev Commun.* **1994**, 96.

- 6. Friebe A., Schmidt J., Volz A., Voigt B., Adam G., Schnabl H.: *Phytochemistry* **1999**, *52*, 1609.
- 7. Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC-102822. Copies of the data can be obtained free of charge on application to CCDC, e-mail: deposit@ccdc.cam.ac.uk.
- 8. Adam W., Smerz A. K.: Bull. Soc. Chim. Belg., Eur. Sect. 1996, 105, 581.
- 9. Voigt B., Porzel A., Golsch D., Adam W., Adam G.: Tetrahedron 1996, 52, 10653.
- 10. Bovicelli P., Lupattelli P., Sanetti A.: Tetrahedron Lett. 1995, 36, 30.
- 11. Curci R., D'Accolti L., Dinoi A., Fusco C., Rosa A.: Tetrahedron Lett. 1996, 37, 115.
- 12. Levinson E. E., Traven V. F.: J. Chem. Res. (S) 1996, 196.
- 13. Kolbe A., Schneider B., Porzel A., Adam G.: Phytochemistry 1996, 41, 163.
- 14. Park S. C., Kim T.-W., Kim S.-K.: Bull. Korean Chem. Soc. 2000, 21, 1274.
- 15. Yokota T., Kim S. K., Ogino Y., Takahashi N. in: Various Brassinosteroids from Phaseolus vulgaris Seeds: Structures and Biological Activity (A. R. Cooke, Ed.). Presented at the Proc. 14th Annu. Plant Growth Regulator Soc. America Meeting Honolulu 1987, p. 28.
- 16. Williamson K. L., Johnson W. S.: J. Org. Chem. 1961, 26, 4563.
- 17. Henbest H. B., Jones D. N., Slater G. P.: J. Chem. Soc. 1961, 4472.
- 18. Arima M., Yokota T., Takahashi N.: Phytochemistry 1984, 23, 1587.
- 19. Voigt B., Whiting P., Dinan L.: Cell. Mol. Life Sci. 2001, 58, 1133.
- 20. Programs for Crystal Structure Determination. University of Göttingen, Göttingen 1986.
- 21. Programs for Crystal Structure Determination. University of Göttingen, Göttingen 1993.
- 22. Brandenburg K.: *Informationssystem für Kristallstrukturen, Version 1.0.3*. Crystal impact gbR, Bonn 1996.